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Acoustic emission (AE) technique is an efficient non-destructive method for detection and identification of
various damage mechanisms in composite materials. Discrimination of AE signals related to different
damage modes is of great importance in the use of this technique. For this purpose, integration of k-means
algorithm and genetic algorithm (GA) was used in this study to cluster AE events of glass/epoxy composite
during three-point bending test. Performing clustering analysis, three clusters with separate frequency
ranges were obtained, each one representing a distinct damage mechanism. Furthermore, time-frequency
analysis of AE signals was performed based on wavelet packet transform (WPT). In order to find the
dominant components associated with different damage mechanisms, the energy distribution criterion was
used. The frequency ranges of the dominant components were then compared with k-means genetic
algorithm (KGA) outputs. Finally, SEM observation was utilized to validate the results. The obtained
results indicate good performance of the proposed methods in the damage characterization of composite
materials.

Keywords Acoustic emission, Composite materials, Damage
characterization, k-means genetic algorithm, Wavelet
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1. Introduction

Fiber-reinforced plastic (FRP) composite materials are
extensively used in various engineering applications because
of their high specific stiffness and strength. However, various
damage mechanisms may degrade the long-term performance
of these materials. Delamination is one of the most significant
failure modes in composites because of its considerable effect
on the reduction of the material residual strength and fatigue
life (Ref 1, 2). Hence, its detection is really an important task.
Acoustic emission (AE) technique is an efficient non-destruc-
tive method for detection and identification of various damage
types in composite materials. AE phenomenon is the result of
transient elastic wave generated by a rapid release of energy
within a material because of changes in local stress and strain
fields (Ref 3). AE signals mostly originate from various
sources, such as matrix cracking, fiber breakage, delamination,
and debonding (Ref 4, 5). Hence, discrimination of AE signals
corresponding to different failure mechanisms is of great
importance in the use of AE technique. In order to find the
relationship between AE parameters and damage mechanisms,

several studies have been conducted using different AE features
such as counts, amplitude, energy, etc. (Ref 6-8). Also, there are
various researches that have used multiparameter analysis to
improve discrimination of AE events (Ref 9-11). Kenji and ono
(Ref 12) used supervised pattern recognition based on the
k-nearest algorithm for identification of damage modes in
carbon fiber/epoxy composites. Supervised pattern recognition
is used whenever the number of damage mechanisms is known
before, while unsupervised pattern recognition is performed
without any previous knowledge. Moevu et al. (Ref 13) applied
unsupervised pattern recognition algorithm on AE signals
obtained from two SiCf/[Si-B-C] composites and could suc-
cessfully distinguish between different types of matrix cracking.

Kohonen�s self-organizing map (SOM) is a neural network
algorithm used by several researchers for clustering AE signals
(Ref 14-16). Godin et al. (Ref 17) used integration of
Kohonen�s som and k-means algorithm for classification of
AE events of glass/epoxy composites and obtained interesting
results. Neural network approach, although accurate, suffers
from a large computational time. Moreover, its performance is
dependent on network structure and number of neurons which
must be specified previously (Ref 18).

Most of the above mentioned studies have been performed
in time domain, while valuable information can be achieved
using frequency domain. Ni and Iwamoto (Ref 19) used
wavelet transform to study the relationship between AE signals
and damage sources and concluded that frequency analysis is
an efficient way for processing AE signals of composite
materials.

Marec et al. (Ref 20) used continuous and discrete wavelet
transform to extract new time-scale descriptors to improve the
characterization of damage mechanisms. They applied fuzzy
c-means clustering associated with a principal component
analysis (PCA) to cluster the AE events. The results showed
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that the new descriptors could provide a better discrimination of
damage mechanisms.

In this article PCA was first employed to reduce the
dimensionality of rather large data without much loss of
information. The AE signals used for clustering analysis were
collected during the quasi-static three-point bending test with
starter delamination crack. After dimensional reduction, the
datasets were clustered using integration of genetic algorithm
(GA) and k-means algorithm. k-Means algorithm is one of the
most widely used clustering algorithms, however, its perfor-
mance strongly depends on the initial cluster centers and it may
get stuck at local minima. In order to overcome this problem,
GA was used as an effective technique to find optimum cluster
centers. Indeed, the searching capability of GA can provide an
optimal solution in a reasonable time.

Also in this study, time-frequency analysis of AE signals was
performed using wavelet packet transform (WPT). AE signals
were first decomposed into a set of wavelet components, each
having its specific frequency range. Then, energy criterion was
used for analyzing each level of AE signals. Applying this
criterion, the dominant components related to different damage
modes were obtained. Finally, after comparing k-means genetic
algorithm (KGA) and WPT outputs, the obtained results were
verified using microscopic observation by SEM. A brief expla-
nation of damage characterization procedure is shown in Fig. 1.

2. Experimental Procedure

The composite materials used in this study were made up of
epoxy resin reinforced by E-glass fiber with volume fraction of

60%. Two types of specimens, cross-ply [0, 90]5s and
unidirectional [0]10, were prepared for the experimental study.
The specimens were in rectangular form with blind holes in the
center. Also, starter crack was created by inserting a Teflon film
with a thickness of about 20 lm as an initial crack for the
delamination test. The blind hole was designed to stimulate
delamination in bottom plies, i.e., push-out delamination and
the pre-crack was utilized to hasten the initiation of delamina-
tion. The laminates were fabricated by manual lay-up with
mold compression. The dimensions of all the specimens were
150 mm9 50 mm9 5 mm. For ease of operation, the cross-ply
specimen is named S1, and the unidirectional specimen is
named S2.

Three-point bending tests were performed in a universal test
machine with the load cell capacity of 1000 N at the cross-head
speed of 0.2 mm/min.

The acoustic emission software AEWin and a data-acquisi-
tion system (PAC) PCI-2 with a maximum sampling rate of
40 MHz were used for recording AE activities. A broadband,
resonant-type, single-crystal piezoelectric transducer manufac-
tured by Physical Acoustic Corporation (PAC) with operating
range of frequencies between 100 and 750 kHz and resonance
frequency of 513.28 kHz was used as the AE sensor. For the
purpose of good acoustic coupling between the sensor and the
specimens, grease was used for covering the surface of
the sensor. In order to determine the threshold value, primary
experiments were conducted without any applied load. The
threshold value of 40 dB could filter the noise of ambient and
the test device very well. Also, calibration of AE signals was
performed in accordance with the standard pencil lead breakage
test (Hsu-Nielsen method). The attenuation of AE signals was
measured by repeating the lead breakage test at different
positions between the AE sensors. AE events were detected by
sensor and enhanced by a 2/4/6-AST preamplifier. The gain
selector of the preamplifier was set to 40 dB. During the test, the
AE signals were monitored by two sensors which were placed in
a linear configuration located at a distance of 100 mm, as shown
in Fig. 2. Two sensors were used ensuring that only the AE
signals of damage area were used for clustering analysis.

3. Clustering Analysis

3.1 Principal Component Analysis (PCA)

The PCA is a multivariate analysis tool commonly used for
reducing dimensionality of a large dataset to enable a better
visualization and analysis of data (Ref 21). Dimensional
reduction is performed by transforming data to a new set of
uncorrelated variables, i.e., the principal components (PCS).
Indeed, PCA projects the data along the directions that describe
maximum variance in the dataset. These directions are deter-
mined by the eigenvectors of the covariance matrix with the
highest eigenvalues. Let x be the n9m input datasets, where n
and m are the number of AE signals and relevant variables
(features), respectively. Since the variables are not in the same
units, the data must be standardized. Standardization is done by
transforming all the data to have zero mean and unit standard
deviation. In this case, all variables have same weight. The next
step after data standardization is to calculate covariance matrix.
Afterward, eigenvectors and corresponding eigenvalues for
covariance matrix have to be calculated. If C denotes the
covariance matrix, then the eigenvalues ki can be obtained by

Fig. 1 Brief explanation of damage characterization procedure
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solving the determinant equation det(C � ki) = 0. Then,
eigenvectors are columns of the matrix A such that C = ADAT,
in which

D ¼

k1 0 . . . 0
0 k2 . . . 0

..

. ..
. ..

. ..
.

0 0 . . . km

2
6664

3
7775 ðEq 1Þ

where k1 ‡ k2 ‡ � � � ‡ km.
If only first l eigenvectors are kept for clustering analysis,

then the transformation to PCS is expressed as

y ¼ XAl ðEq 2Þ

where Al (m9 l) denotes the matrix having the first l eigen-
vectors. It should be mentioned that the cumulative sum of
the variances of the first few PCs should be at least 80% of
the total variance of the input data.

3.2 k-Means Algorithm

The objective of k-means algorithm is to classify a set of n
data points in m-dimensional space into k number of classes
(Ref 22). The classification is done by minimizing the sum of
squares of distances between data and the respective cluster
centers. The first step of k-means algorithm is to partition the
input data into k initial sets. After calculating mean point
(centroid), a new partition is constructed by assigning each
point to the cluster with the nearest center. Then, the new
centroids are recalculated for the new clusters, and the
algorithm is repeated by alternate application of these two
steps until the coordinates of cluster centers do not change any
more. Since the number of classes is not known a priori, the
algorithm must be executed for different values of k, and the
best partitioning must be defined by means of a validity criteria
such as the Davis-Bouldin (DB) index (Ref 23). The DB index
is calculated as follows:

DB ¼ 1

k

Xk
i¼1

max
i 6¼j

si þ sj
dij

� �
ðEq 3Þ

where s is the within-cluster distance, d is the between clus-
ters distance, and k is the number of clusters. The low values
of DB index indicate good clustering.

3.3 k-Means Genetic Algorithm

The drawback of k-means algorithm is that its performance
strongly depends on the choice of the initial cluster centers, and
it often gets stuck at local minima. In order to solve this
problem, integration of k-means algorithm and genetic algo-
rithm is proposed as an effective clustering technique (Ref 24,
25). Combining the simplicity of k-means algorithm with the
capability of GAs in avoiding local optima can provide an
optimum clustering of AE events.

The steps of KGA are as follows:

Step 1 Chromosome representation. Each chromosome is a
series of real numbers representing the cluster centers.

Step 2 Population initialization. k random points are chosen
from input dataset to form cluster centers.

Step 3 Clustering. In this step, each point x is assigned to
the cluster with the nearest center, and then new
centers are calculated by Eq 4:

z�i ¼
1

ni

X
xj2Ci

xj; i ¼ 1; 2; . . . ; k ðEq 4Þ

where z�i is the new cluster center and ni is the
number of points belonging to cluster Ci.

Step 4 Fitness computation. Fitness value is defined as the
summation of the Euclidean distances of the points
from their corresponding cluster centers (Eq 5):

Fitness value ¼
Xk
i¼1

X
xj2Ci

jjxj � zijj ðEq 5Þ

where zi denotes cluster center, and k is the number
of clusters. For optimum clustering, fitness value
must be minimized.

Step 5 Selection. Two parents are selected from a popula-
tion according to their fitness to create two new chil-
dren. In this study, Roulette wheel selection with
elitist selection was used. Elitist selection, which
copies at least one best solution without any changes
to a new population, guarante the best solution ever
found to survive till the end.

Step 6 Crossover. In this step, two parents exchange their
information to create new children with a specified
crossover probability.

Fig. 2 Shematic of experimental set-up
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Step 7 Mutation. After crossover is performed, mutation
takes place according to Eq 6:

r0 ¼ r � ð1� 2DÞ if r 6¼ 0
ð�2DÞ if r ¼ 0

�
ðEq 6Þ

where r and r¢ are the values are at a gene position
before and after mutation, respectively, and D is a
number in the range [0, 1] generated with uniform
distribution. The (+) or (�) sign both have the same
probability to occur.

Step 8 Checking stopping criterion. The algorithm should
be repeated, while the stopping criterion is reached.
In this article, the maximum number of iterations
was used as stopping criterion.

Table 1 summarizes the initial parameters of KGA. Also, the
flowchart of the algorithm is shown in Fig. 3.

3.4 Wavelet Packet Transform

The wavelet transform (WT) is a powerful signal-processing
tool introduced in the mid-1980s (Ref 26). WT has been used
successfully by various researchers for analyzing AE signals
(Ref 27, 28). Wavelet is a waveform of effectively limited
duration with zero average value. Let f(t) be an arbitrary square
integrable function. Mathematically, the continuous WT of f(t)
with respect to a mother wavelet w(t) is expressed as

CWT a; bð Þ ¼ 1ffiffiffi
a
p

Zþ1

�1

f ðtÞw� t � b

a

� �
dt ðEq 7Þ

where a is the scale parameter, b is the translation parameter,
and w* is the complex conjugate of the mother wavelet. The
inverse continuous WT is defined by Eq 8 and 9:

f tð Þ ¼ 1

C

Zþ1

a¼�1

Zþ1

b¼�1

1

jaj2
CWT a; bð Þw tð Þ da db ðEq 8Þ

C ¼
Zþ1

�1

jW xð Þ2j
x

dx ðEq 9Þ

The most common method of discrete WT is to use dyadic
scales and translations. In this case, the scale parameter takes
values of the form a = 2j, and the translation parameter takes
the values of the form k Æ 2j, where j and k are integers.
Mathematically, discrete WT can be described as Eq 10:

f ðtÞ ¼ c
X
j

X
k

DWTðj; kÞ2�j=2 wð2�jt � kÞ ðEq 10Þ

Where the wavelet coefficients DWT(j, k) are described by
Eq 11:

DWT j; kð Þ ¼
Zþ1

�1

f ðtÞ2j=2 w�ð2jt � kÞ dt ðEq 11Þ

The discrete WT splits a signal into approximations and
details. The approximations are the high-scale, low-frequency
components, and the details are the low-scale, high-frequency
ones. The approximation itself is then split into a second-level
approximation and detail, and the process is repeated till
satisfactory results are obtained. Discrete WT decomposition
tree is shown in Fig. 4. In some special applications, where the
important information is located in higher frequencies, the
decomposition process of only the approximation components
at each level is not sufficient. Hence, in order to improve the
time-frequency analysis, further decomposition of detail com-
ponent to its own detail and of approximation components is
necessary. This is called wavelet packet transform (WPT)
which offers the richest analysis (Ref 29). Figure 5 shows the
WPT tree for a signal s.

Table 1 Initial parameters of KGA

Initial
population

Crossover
rate

Mutation
rate

Maximum number
of iterations

100 0.7 0.01 500

Fig. 3 Flowchart of KGA

Fig. 4 Discrete wavelet transform decomposition tree
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A wavelet packet wj,k
i can be defined using Eq 12:

wi
j;k ¼ 2�j=2wið2�jt � kÞ; i ¼ 1; 2; . . . ; jn ðEq 12Þ

where i, j, and k are the modulation, scale, and translation
parameters, respectively, and n denotes the level of decompo-
sition. The wavelet function wi is obtained from the following
recursive relationships:

w2iðtÞ ¼ 1ffiffiffi
2
p

Xþ1
k¼�1

hðkÞwi t

2
� k

� �
ðEq 13Þ

w2iþ1ðtÞ ¼ 1ffiffiffi
2
p

Xþ1
k¼�1

gðkÞwi t

2
� k

� �
ðEq 14Þ

The first two wavelet packet functions are the scaling and
the mother wavelet functions:

w0ðtÞ ¼ /ðtÞ ðEq 15Þ

w1ðtÞ ¼ wðtÞ ðEq 16Þ

The discrete filters h(k) and g(k) are quadrature mirror filters
associated with the scaling function and the mother wavelet
function.

The wavelet packet coefficients cj,k
i can be calculated from

Eq 17:

cij;k ¼
Zþ1

�1

f ðtÞwi
j;kðtÞ dt ðEq 17Þ

The wavelet packet component fj
i(t) is obtained by

Eq 18:

f ij ðtÞ ¼
Xþ1
k¼�1

cij;kw
i
j;kðtÞDt ðEq 18Þ

After performing the jth level of decomposition, the original
signal is represented as Eq 19:

f ðtÞ ¼
X2j

i¼1
f ij ðtÞ ðEq 19Þ

In this article, the energy criterion was employed to find the
dominant components that were related to different damage
modes.

If f1
j, …, fi

j denote the components of jth level of the
decomposed signal, the component energy at level j can be
calculated from Eq 20:

Ei
jðtÞ ¼

Xt
s¼t0
ðf ij ðsÞÞ

2 ðEq 20Þ

Then the total energy of signal is defined by Eq 21:

ETotalðtÞ ¼
X
j

Ei
jðtÞ ðEq 21Þ

In order to find energy distribution displayed at different
components, the ratio of energies at different levels to the total
energy must be calculated. Equation 22 determines a relative
energy distribution at each level:

pðtÞ ¼
Ei
jðtÞ

ETotalðtÞ
; i ¼ 1; . . . ; 2j ðEq 22Þ

4. Results

During the three-point bending test of the specimens, S1 and
S2, about 6000 and 10000 AE signals were detected, respec-
tively. Six important AE features peak amplitude, rise time,
count, energy, duration, and average frequency were extracted
using the threshold value of 40 dB. In order to reduce the
dimensionality of rather large dataset and better visualization of
the data in a two-dimensional subspace, PCA was utilized.
Since the variables (features) were not in same units, they were
first standardized by their standard deviation. In this study, two
first PCs were kept for clustering analysis. The cumulative sum
of the variances of the two first PCs was about 86% of the total

Fig 5 Wavelet packet transform tree

Fig. 6 DB index vs. the number of clusters (specimen S1)
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variance of the input data for specimen S1, and 89% for
specimen S2. After dimensional reduction, the AE signals were
clustered using KGA. The optimum number of clusters was
determined using Davis-Bouldin validity (DB) index. For this
purpose, the KGA was executed with values of k from 2 to 10
and the DB index was calculated for each run. Figures 6 and 7
show average DB index versus the number of clusters (k).

The obtained results indicate that the optimum number of
clusters which minimizes the DB index is three. PCA
visualizations of KGA clustering are shown in Fig. 8 and 9.
The results show that AE signals are well separated along the
first principal direction. The distribution of AE signals in
different clusters is summarized in Table 2. For the specimen
S1, the first and the second clusters contain 94% of total AE
signals. For the specimen S2, the second and the third clusters
are more populated. About 84% of total AE signals are
distributed in these two clusters.

Fig. 7 DB index vs. the number of clusters (specimen S2)

Fig. 8 PCA visualization of KGA clustering for specimen S1

Fig. 9 PCA visualization of KGA clustering for specimen S2

Table 2 Distribution of AE signals in three clusters

Specimen
First

cluster, %
Second

cluster, %
Third

cluster, %

S1 64 30 6
S2 16 27 57

Fig. 10 Frequency distribution chart for specimen S1
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Since the datasets were labeled, mean AE parameters could
be calculated for each cluster. Among different AE parameters,
frequency was best distinguished. Hence, frequency was used
as an efficient AE descriptor for damage characterization. The
frequency contents of AE signals belonging to different clusters
were obtained, and the frequency distribution charts were
illustrated. Figures 10 and 11 show frequency distribution
charts for the specimens, S1 and S2, respectively. The results

highlight three separate frequency ranges for both specimens.
Dominant frequency ranges of the obtained clusters are
summarized in Table 3. It should be mentioned that, as shown
in Fig. 10 and 11, there are some frequencies with low densities
in each cluster that should be related to some other phenomena.
Identification of these phenomena was not investigated in this
study because they involve very small portions of AE events.
The frequency ranges obtained by KGA were then compared
with WPT results. For this purpose, AE signals were decom-
posed into three wavelet components using debauchees D10.
The debauchees family was used based on the similarities
between the AE signals and the wavelet family. Meanwhile,
using trial and error method, db 10 was found the most
appropriate among debauchees families, which could best
match the AE signals. The entropy criterion was applied to
define if further decomposition was necessary. Figure 12 shows
the three-level WPT decomposition of an AE signal for the
specimen S1. Each component represents a specific frequency
range which can be obtained using FFT method (Fig. 13). With
the aim of discriminating damage mechanisms, energy criterion
was applied. The energy percentage of each component of level
three was compared with the total energy of the AE signals
based on the Eq 20-22. Figures 14 and 15 show energy
distribution of level three components for the specimens, S1
and S2, respectively. The greatest percentage of energy is
concentrated in the components LHL3, LLH3, and LHH3. For
the specimen S1, the most dominant components are LHL3 and
LLH3, while for the specimen S2, the most significant ones are
LLH3 and LHH3 from energy point of view. It is clear that the
energy distribution pattern at the same component is different
for different specimens. This difference is because of different
major damage mechanisms for each specimen.

Table 4 summarizes the frequency range of dominant
components. These results are in good consistency with KGA
outputs (see Table 3).

According to the previous studies conducted in this field
(Ref 17, 20, 30), there are three prevalent damage mecha-
nisms for fiber-reinforced composite materials: matrix crack-
ing, fiber-matrix debonding and fiber breakage. SEM
observation taken in the vicinity of starter crack illustrates

Fig. 11 Frequency distribution chart for specimen S2

Table 3 Frequency range of the obtained clusters

Specimen

Frequency range, kHz

First class Second class Third class

S1 90-195 210-335 360-450
S2 85-180 205-325 345-445

Fig. 12 Three-level wavelet packet decomposition of an AE signal
for specimen S1 (amplitude in [mV] vs. samples)
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these failure mechanisms. As shown in Fig. 16, for the
specimen, S1, matrix cracking and fiber-matrix debonding,
are the most dominant failure modes. However, a little fiber
breakage was also observed. For the specimen, S2, fiber
breakage and debonding are the most significant failure
modes (Fig. 17). Considerable fiber breakage in the speci-
men, S2, can be related to fiber-bridging phenomenon in
unidirectional composites.

In order to correlate the AE signals of each cluster to a distinct
damage mechanism, the relationship between frequency con-
tents and damage mechanisms was considered. The relationship
between frequency ranges and damage mechanisms could be
found based on the different visco-elastic relaxation processes
near the damage sources (Ref 31, 32). Intrinsic frequencies fi and
elastic acoustic velocities of relaxation processes rely on the
elastic moduli and density as shown in Eq 23 (Ref 32):

Fig. 13 Level 3 FFT of the decomposed components (FFT amplitude [mV2/Hz] vs. frequency [Hz])

Fig. 14 Energy percentage of each component of Level 3 for S1 (energy [%] vs. samples)
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fi �
1

si
� ci �

ffiffiffiffiffi
Ei

qi

s
ðEq 23Þ

where si is the relaxation time, qi is the density and Ei is the
elastic modulus.

According to the Eq 23, the lowest and the highest
frequencies are related to matrix (epoxy) cracking and fiber
(glass) breakage, respectively. The frequency contents of glass-
epoxy debonding are between frequency contents of matrix
cracking and fiber breakage.

Hence, it can be concluded that the AE signals of the first
cluster are representatives of matrix cracking, while the AE
signals of the second and the third clusters are associated with
fiber-matrix debonding and fiber breakage, respectively.

As mentioned above, for the specimen, S1, matrix cracking
and debonding are the most significant damage mechanisms.
These two mechanisms contain 94% of total AE activities of
specimen S1 (see Table 2). For the specimen, S2, debonding

Fig. 15 Energy percentage of each component of Level 3 for S2 (energy [%] vs. samples)

Table 4 Frequency range of dominant components

Component LHL3 LLH3 LHH3

Frequency range, kHz 100-190 200-320 355-450

Fig. 16 SEM observation of dominant failure mechanisms (speci-
men S1)

Fig. 17 SEM observation of dominant failure mechanisms (speci-
men S2)
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and fiber breakage are the most dominant failure mechanisms.
About 84% of AE activities are associated with these two
mechanisms.

Also the sequence of damage mechanisms is illustrated in
Fig. 18 and 19. The figures show load-displacement data as
well as the order of damage mechanisms. For both the
specimens, matrix cracking is the earliest damage mode that
appears from the beginning of the tests, while debonding and
fiber breakage happen later. For the specimen, S2, fiber
breakage grows faster than the two other damage mecha-
nisms do and contains much more AE events, especially at
the final stages of the experiments. For the specimen, S1,
matrix cracking is the most predominant damage mode.
However, debonding is also increasing till the end of the
tests.

5. Conclusion

The aim of this study was to develop efficient methods to
discriminate different damage mechanisms of glass/epoxy
composites. For this purpose, integration of k-means algorithm
and genetic algorithm was applied to cluster AE activities.
Using Davis-Bouldin validity (DB) index, three clusters with
separate frequency ranges were achieved. Each frequency range
was related to a distinct damage mode. The outputs of KGA
were then compared with WPT results. First, AE signals were
decomposed into three levels, and then the energy distribution
criterion was used to find the dominant components. Three
components LHL3, LLH3 and LHH3 with frequency ranges at
100-190, 200-320, and 355-450 kHz, respectively, were the

Fig. 18 Load-displacement data and sequence of damage mechanisms (specimen S1)

Fig. 19 Load-displacement data and sequence of damage mechanisms (specimen S2)
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most significant from the energy criterion point of view. The
frequency ranges obtained by WPT were in good consistency
with KGA outputs. Also, in this study, SEM observation was
used for validating the results. SEM observation revealed that
the damage mechanisms of matrix cracking, debonding, and
fiber breakage were the sources of AE signals. Considering the
relationship between frequency ranges and damage mecha-
nisms, the AE signals of each cluster were assigned to a distinct
damage mechanism. It was concluded that the AE signals of the
first cluster were related to matrix cracking, and the those of the
second and the third clusters were representative of fiber-matrix
debonding and fiber breakage, respectively. According to the
distribution of AE signals in different clusters, matrix cracking
and debonding were the most significant damage mechanisms
for the specimen S1, while debonding and fiber breakage were
the most dominant failure mechanisms for the specimen S2.
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